

Behandeln Forschen Lehren

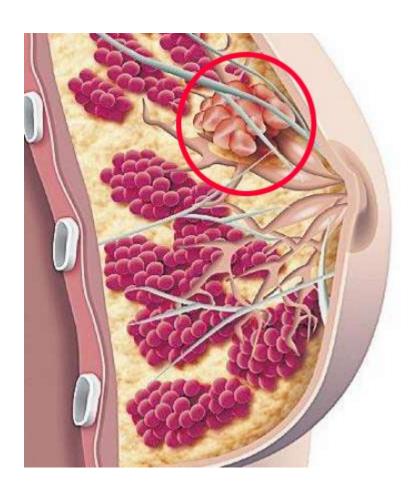
UniversitätsKlinikum Heidelberg

Standards And Innovation In Adiuvant Radiotherapy After Breast-conserving Surgery (BCS)

Jürgen Debus
Department Radiation Oncology
University Heidelberg

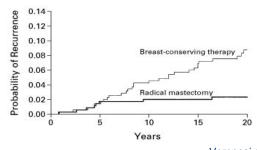
Radiotherapy Breast Cancer

CT-based 3D treatment planning


Target volume: whole breast, chest wall

Organs at risk: lung, heart, contralateral breast

<u>Fractionation:</u> dose application in > 30 sessions <u>Aim:</u> to take advantage of DNA-repair in normal cells


Holland et al., Cancer, 1985:

no residual tumor: 37%

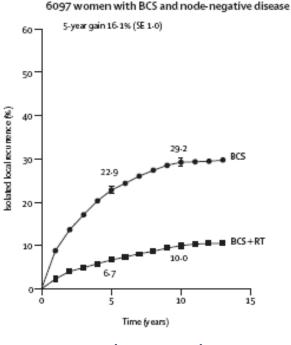
Residual tumor 0-2 cm from PT: 20%
Residual tumor > 2 cm from PT: 43%
Residual tumor > 4 cm from PT: 10%

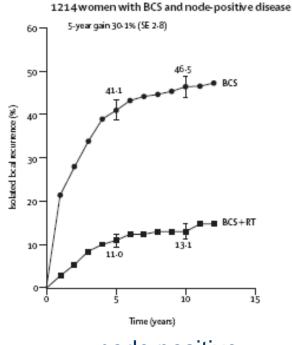
Sole breast-conserving surgery associated with significantly higher recurrence rates than primary ablation

Adjuvant Radiotherapy Invasive Cancer

Influence of radiation on local tumor control

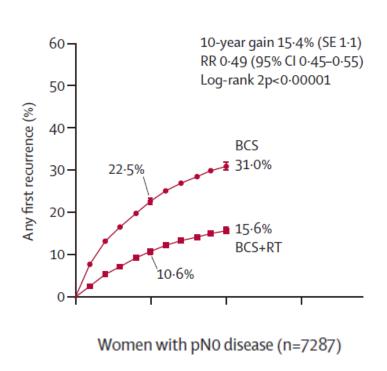
Metaanalysis Early Breast Cancer Trialists Collaborative Group (EBCTCG) Loncot 2005; 366: 2087-2106

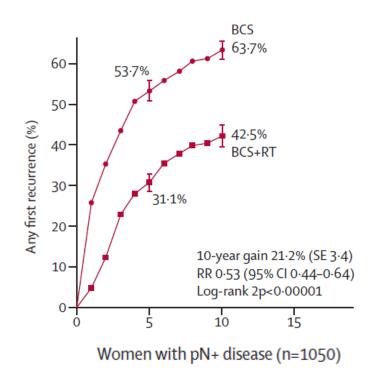

Isolated local recurrence (events/woman-years)


		Events/wo	man-years	BCS+R	Tevents			
Yearstarted and study name		Allocated BCS+RT	Allocated BCS	Logrank 0-E	Variance of 0-E	Ratio of annual event rates BCS + RT : BCS		
(a) Radiotherapy only to co	nserved breast: 14% no	de positive						
1976 NSABPB-06	BW*	125/6862	285/4991	-93-3	84-8	-		
1981 Uppsala-Örebro	BM	10/1636	43/1511	-17.7	12.7			
1982 St George's London	BW*	12/1202	31/1047	-11.5	9.6	-		
1984 Ontario COG	BW+S	53/3543	155/2754	-58-2	48-2	- ė -		
987 INT Milan 3	BW+5*	19/2478	60/2005	-25.1	18-2	-■ -		
989 NSABP B-21	BW+5*	6/1810	40/1729	-17-3	11.2			
1991 Swedish BCCG	BW	33/3718	92/3429	-30-8	30-5			
(a) Subtotal		258/ 21249	706/ 17466	-254-0	215-3	•	0-31 (SE 0-04), 2p<0-00001	
5-year risk		7-2%	25.6%					
(b) Radiotherapy to consen	ved breast and other site	s: 24% node	positive					
1982 St George's London	BW+AF*	14/620	30/380	-10-9	9.7	_		
1985 Scottish	BW+S+(AF)+IMC	16/2598	83/2260	-33-0	22.5			
985 West Midlands, UK	BW+S+AF+IMC	42/2398	104/1929	-36-8	34-2	—		
986 CRC, UK	Various	33/1604	77/1454	-24-3	25.7			
(b) Subtotal		105/ 7220	294/ 6023	-1050	92-1	*	0-32 (SE 0-06), 2p<0-00001	
5-year risk		7.7%	26.7%					
Total (a+b)		363/ 28469	1000/ 23489	-3590	307-4	•	0.31 (SE 0.03), 2p<0.00001	
5-year risk		7.3%	25.9%					
Heterogeneity betwee	n 11 strata: χ ² ₁₀ =7·8; p=0	6			_		10 15	
					0	_	1.5	2.0
						BCS+RT better	BCS+RT worse	

Influence of radiation on local tumor control

Metaanalysis Early Breast Cancer Trialists Collaborative Group (EBCTCG) Longot 2005; 366: 2087-2106

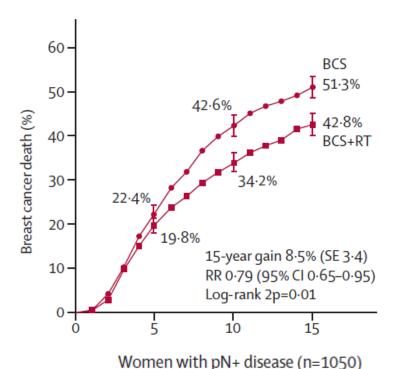

node negative node positive


Relative reduction of local recurrence rates of approx. 70%

Influence of radiation on total recurrence rate

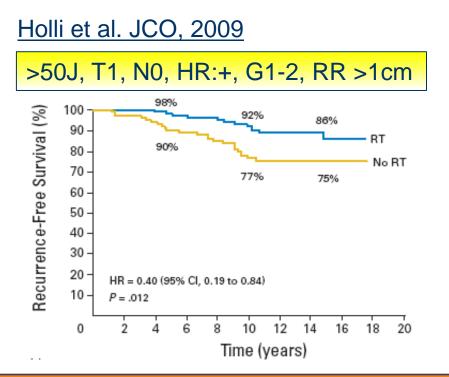
Metaanalysis Early Breast Cancer Trialists Collaborative Group (EBCTCG) Lancet 2011; 378: 1707-16

Relative reduction of any recurrence rates of approx. 50%



Influence of radiation on mortality

Metaanalysis Early Breast Cancer Trialists Collaborative Group (EBCTCG) Lancet 2011; 378: 1707-16



(11-7207) Women With prv. disease (11-1030)

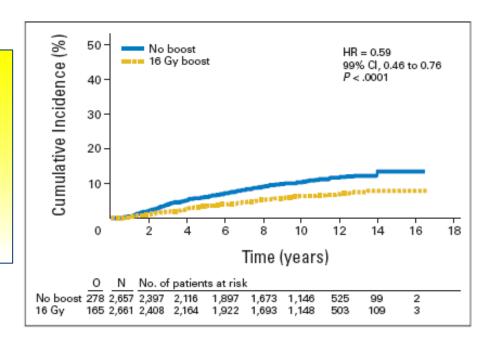
Radiotherapy in BCS improves survival

Are there certain subgroups where adjuvant radiotherapy can be omitted?

Adiuvant RT is standard after BCS even in patients with favorable prognosis!

Can outcome be optimized any further by an additional boost-irradiation of the tumor bed?

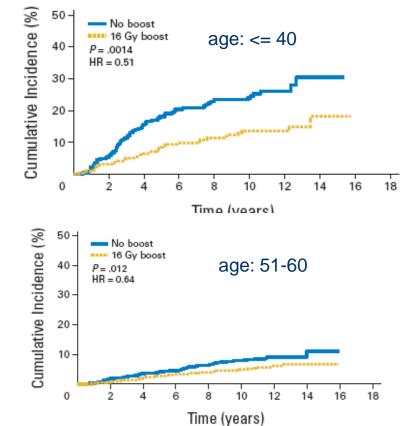
Reason: 90% of local recurrences occur in proximity of the primary

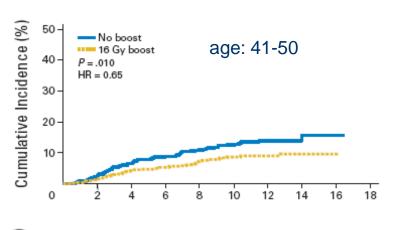

EORTC Trial, Bartelink et al., 2007:

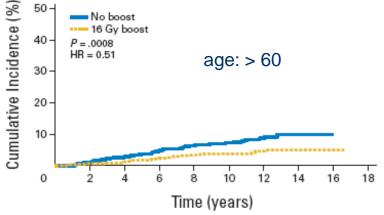
5318 patients, prospectively randomised

Whole-breast RT (50 Gy)

VS.


Whole-breast RT + 16 Gy Boost





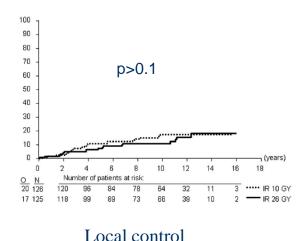
Boost-irradiation of the tumor bed

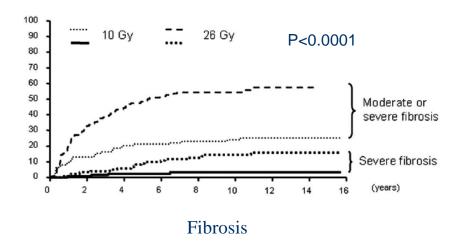
EORTC Trial, Bartelink et al., 2007:

Boost-irradiation of the tumor bed

Further risk factors for In-Breast-Recurrences:

- •Tumor size >2 cm (T2)
- Close margin (< 3 mm)
- Extensive intraductal component (EIC)
- Lymphangiosis (L1)
- High grade (G3)
- ER/PR-Negativity
- Multifocality

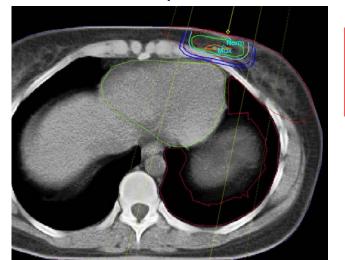



Boost-irradiation of the tumor bed

Can dose escalation of the boost dose compensate for incomplete resections?

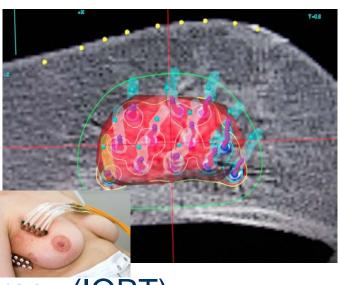
Poortmanns et al., Radiother Oncol 2009:

251 patients, T1-2 N0-1, R1-Resection, randomised 10 Gy vs. 26 Gy Boost



Boost dose escalation does not improve local control after R1-Resection while late toxicity is increased

Boost-irradiation of the tumor bed after surgery


Percutanous 3D-planned radiotherapy

Do we hit the target?

3D-planned brachytherapy

Electrons

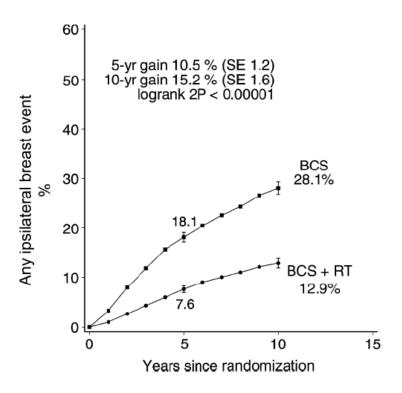
Intraoperative radiotherapy (IORT)

Photons

Is adjuvant RT necessary after BCS for DCIS?

Metaanalysis EBCTCG, 2010:

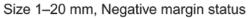
Journal of the National Cancer Institute Monographs, No. 41, 2010

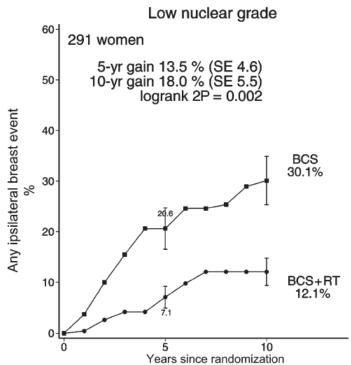

Study	Events/ Allocated BCS + RT	women Allocated BCS		RT events kVariance of O-E	Ratio of anno BCS + RT	ual event rates : BCS
NSABP B-17	78/400 (19·5%)	139/398 (34·9%)	-36-8	52-3	-	0.49 (SE 0.10)
EORTC 10853	64/462 (13·9%)	118/456 (25·9%)	-28-8	43.9	-	0.52 (SE 0.11)
SweDCIS	59/511 (11·5%)	131/500 (26·2%)	-41-3	45-9	-	0.41 (SE 0.10)
UK/ANZ DCIS	28/505 (5·5%)	67/497 (13·5%)	-20-5	22.8	-	0.41 (SE 0.14)
■ Total	229/ 1878 (12·2%)	455/ 1851 (24·6%)	-127-4	164-9	\(\)	0.46 (SE 0.05) 2P < 0.00001
- ■ 99% or <>> 95% CI				0	0.5	1.0 1.5 2.0
Heterogeneity be	tween 4 trials	s: χ ₃ ² = 2·0; F	P = 0·6	E	BCS + RT better	BCS + RT worse
Treatment effect 2P < 0.00001					ect 2P < 0·00001	

Is adjuvant RT necessary after BCS for DCIS?

Metaanalysis EBCTCG, 2010:

Journal of the National Cancer Institute Monographs, No. 41, 2010





Is adjuvant RT necessary after BCS for DCIS?

Metaanalysis EBCTCG, 2010:

Journal of the National Cancer Institute Monographs, No. 41, 2010

No identification of subgroups that do not profit with respect to local control!

Is adjuvant RT necessary after BCS for DCIS?

Wong et al., JCO, 2006:

Prospectively randomised study: sole BCS vs. BCS+ adjuvant RT planned patient number: 200

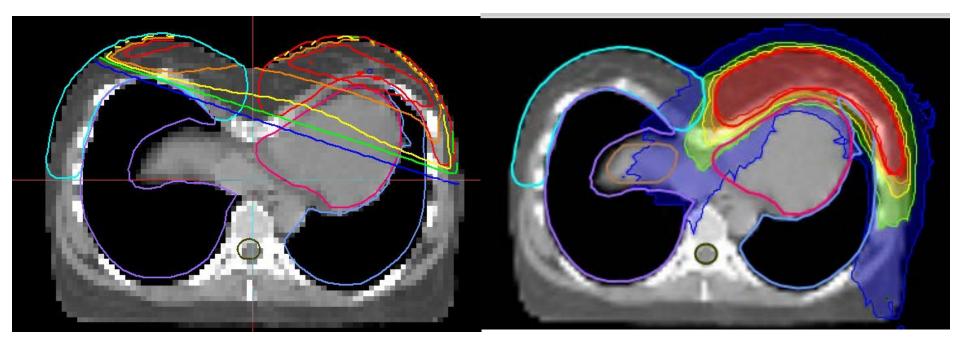
Inclusion criteria:

G1-2

Margins >= 1 cm

Tumor size <= 2,5 cm

Van Nuys Prognostic Index (VNPI) <7

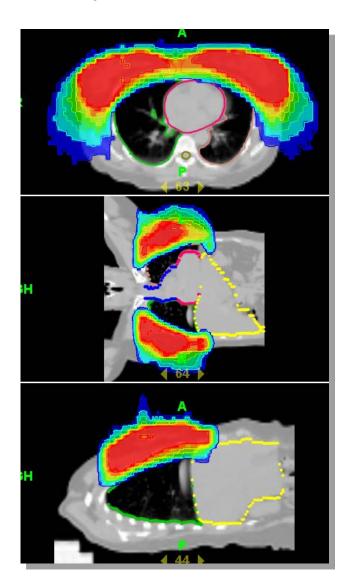

Premature study termination after158 patients because of high recurrence rates!

5-year recurrence rates: approx. 12% (70% DCIS, 30% invasive)

No identification of subgroups without benefit from adjuvant RT!

Technical Developments: Aim: Better Conformation Of Dose:

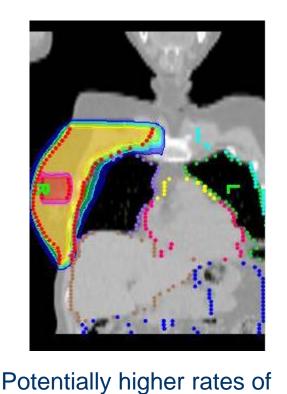
Intensity Modulated Radio Therapy (IMRT)



conventional 3D-Plan

IMRT

Intensity Modulated Radio Therapy (IMRT)


40 y old patient afterbilateral BCS: sparing of lung and heart tissue

Intensity Modulated Radio Therapy (IMRT)

Integrated Boost

acute and late normal tissue changes by elevated single doses

Shortening of overall treatment time

MINT-Trial

Prospectively randomised, multicentric phase-III study

Hypothesis: no impairment of the outcome despite the shortened treatment

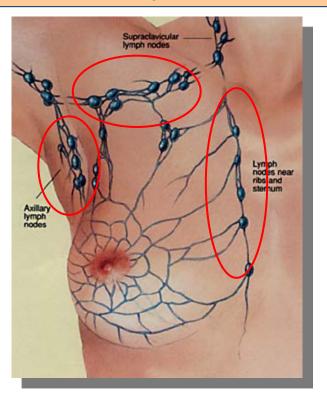
N= 502 patients
Adjuvant RT after BCS

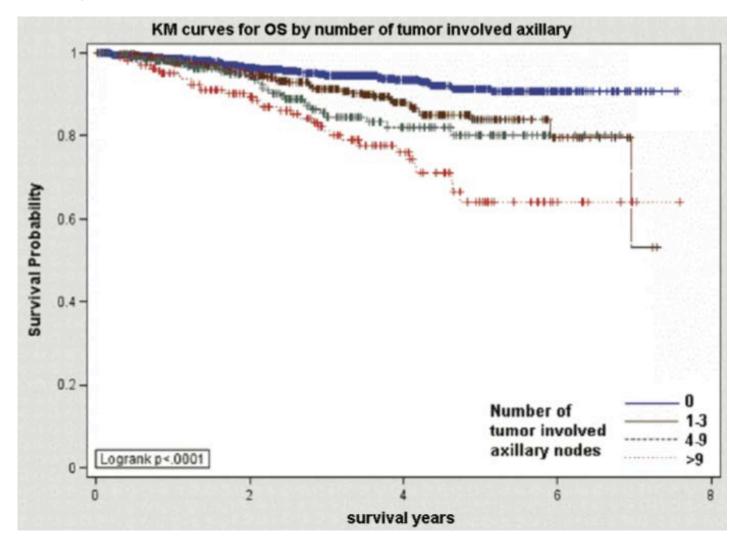
Konv. RT + sequent. Boost

28 + 8 = 36 fractions

IMRT + integrated Boost

28 fractions


Endpoints: Cosmetics, toxicity and local control


Adjuvant Radiotherapy Regional Lymphatics

Little evidence by clinical studies on adjuvant RT of the lymphatics to date

Most data result from post-mastectomy trials

The Impact Of Nodal Status On Survival: Heidelberg Cohort 2003-2009 (N= 3089 all breast cancers)

Nodal Status Is An Independet Predictor: Heidelberg Cohort 2003-2009 (N= 2723 inv. breast cancers)

DFS DDFS os Univariate Multivariate Univariate Multivariate Univariate Multivariate Age 1.017 1.018 1.01 1.014 1.029 1.036 (0.0288)(<0.0004)(0.0037)(<0.0002)(<0.0001)(<0.0001)pT category 2.105 1.67 2.334 1.882 2.181 1.824 (<0.0001)(<0.0001)(<0.0001)(<0.0001)(<0.0001)(<0.0001)Nodal status 1.655 1.354 1.723 1.368 1.59 1.355 (<0.0001)(<0.0001)(<0.0001)(<0.0001)(<0.0001)(<0.0001)Grading 2.502 1.673 2.701 1.759 3.215 1.804 (<0.0001)(<0.0001)(<0.0001)(<0.0001)(<0.0001)(<0.0003)HR status 0.376 0.421 0.383 0.410 0.27 0.262 (<0.0001)(<0.0001)(<0.0001)(<0.0001)(<0.0001)(<0.0001)HER2 status 2.27 1.05 2.117 0.968 2.348 0.822 < 0.0001)(0.7811)(<0.0001)(0.8586) (<0.0001) (0.3988)

DFS, disease-free survival; DDFS, distant disease-free survival; OS, overall survival; HER2, human epidermal growth factor receptor 2; HR, hormone receptor.

Adjuvant Radiotherapy Axillary Lymphatics

Is additional therapy of the axilla mandatory in positive sentinel node?

Tjan-Heijnen, ASTRO abstract 2009:

retrospective, 2592 pat., no macro mets, only pN0(i-), pN0(i+) or pN1mi

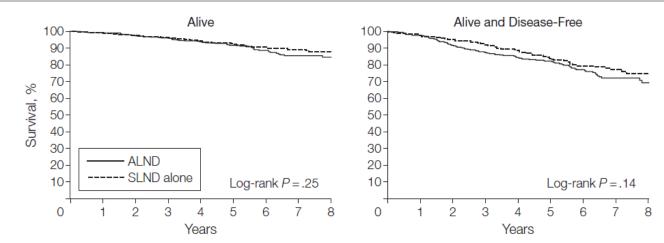
Treatment: SN only or completion ALND or axillary RT

n 5-year AR(%) HR AR (95%CI)*	n 5-	year AR	(%) HR	AR	(95%CI)	*
-------------------------------	------	---------	--------	----	---------	---

pN0(i-)(sn) cALND	113	1.9	1.00
pN0(i-)(sn) SN	722	2.2	1.07 (0.23 - 4.94)
pN0(i+)(sn) cALND or ax RT	459	1.1	1.00
pN0(i+)(sn) SN	340	1.7	2.14 (0.57 - 7.96)
pN1mi(sn) cALND or ax RT	828	1.2	1.00
pN1mi(sn) SN	130	6.2	4.45 (1.46 - 13.54)

Significantly higher axillary recurrence rate in pN1mi when no further treatment (surgery or RT) is performed

Adjuvant Radiotherapy Axillary Lymphatics


Is additional therapy of the axilla mandatory after positive SLND?

Giuliano et al., JAMA 2011: ACOSOG Z0011 trial

randomized, closed prematurely: 856 of 1900 planned patients T1-2, cN0, sentinel node biopsy positive (1-2 SNB+)

Treatment: BCS, adjuvant tangential RT (breast only, not axilla)

Randomisation: completion ALND vs. no further dissection

Adjuvant Radiotherapy Axillary Lymphatics

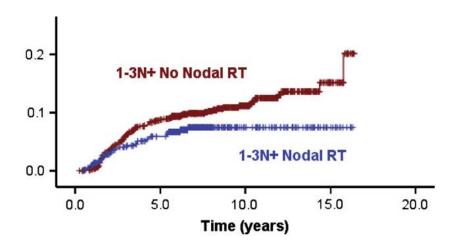
Is additional therapy of the axilla mandatory after positive SLND?

Giuliano et al., JAMA 2011: ACOSOG Z0011 trial

Conclusion: "in patients with limited positive SLN disease, treated with breast conservation +/- systemic therapy, the use of SLND alone compared with ALND did not result in inferior survival"

But:

- Study not powered for the limited patient number
- Primary endpoint overall survival, not locoregional recurrence
- Short follow-up (median 6.3 y) for detection of survival differences
- Radiotherapy not further specified, espec. concerning inclusion of axilla


Results should be interpreted very carefully

Adjuvant Radiotherapy Supraclavicular Lymphatics

Irradiation of the supraclavicular lymphatics even in less than 4 affected axillary nodes?

Truong et al. 2009: retrospective, 5699 Pat., T1/2, N0-1a, M0

1-3 pos. ax. LN: age<50 or G3 or ER-neg.: locoregional recurrence risk 15-20 %

significant reduction of regional recurrence by supraclavicular RT

Adjuvant Radiotherapy Supraclavicular Lymphatics

Irradiation of the supraclavicular lymphatics even in less than 4 affected axillary nodes?

Whelan, ASCO Abstract 2011: Intergroup / NCIC-CTG MA.20 trial

Prospective, multicenter, 1832 pts., high-risk N0 (10%) or N+ (85% N1a)

Whole-breast RT (50 Gy)

Whole-breast RT (50 Gy)

+

regional nodal RT

(SCLV/internal mammary/axillary apex) (45 Gy)

Impact of WBI+RNI on:

- isolated locoregional 5-yr DFS: 96.8% vs 94.5% (SS)
- distant DFS: 92.4% vs 87.0% (SS)
- DFS: 89.7% vs 84.0% (SS)
- OS: 92.3% vs 90.7% (trend p=0.07)

Summary

Invasive carcinoma: Adjuvant RT improves local control and overall survival

further improvement of local control by Boost-RT

• <u>In-situ carcinoma</u>: Adjuvant RT after BCS improves local control

no identification of subgroups not profiting to date

IMRT: improved dose conformality and normal tissue sparing

possibility of integrated boost concept

Regional lymphatics: SLN+: omission of cALND only in selected cases

1-3N+: RT of supraclavicular lymphatics (G3,<50y,ER/PR -)

4-N+: supraclavicular RT generally recommended